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ABSTRACT

In this paper, we review the recent developments in establishing the correspon-

dence between Quantum Field Theory (QFT) and Neural Networks (NNs), pioneered

by Halverson et al. (2021). We first introduce the concept of neural networks and

then discuss the NN-QFT correspondence. The correspondence consists of two main

ingredients developed in QFT: Effective Field Theory and Renormalization Group

flow. The correspondence relies on the observation that many asymptotic neural

networks are drawn from Gaussian Processes (GPs), the analog of non-interacting

field theories. Moving away from the asymptotic limit yields a non-Gaussian process

and corresponds to introducing particle interactions, allowing for the computation of

correlation functions of neural network outputs with Feynman diagrams. Wilsonian

renormalization group flow allows for determining the most relevant non-Gaussian

terms. The formalism is valid for any architecture that becomes a GP in an asymp-

totic limit, a property preserved under certain types of training.

1. INTRODUCTION

In this paper, we discuss the NN-QFT correspondence and its experimental veri-

fication proposed in Halverson et al. (2021). We note that Halverson et al. (2021)

experiments involve only randomly initialized networks, rather than trained networks,

which means understanding of learning is left to future work and we discuss possible

approaches in Section 7. The establishment of the correspondence was inspired by

an observation that randomly initialized infinite width NNs are GPs (Yang 2019a,

2020a,b). The primary goal of the work was to develop EFT techniques for treating

the non-gaussian processes (NGPs) associated with neural networks. Furthermore,

the NN-QFT correspondence is hypothesized to persist under neural network train-

ing, given that it has been previously shown in the literature that the GP property

persists under appropriate training (Yang 2019a, 2020b; Yang & Hu 2020; Lee et al.

2020; Jacot et al. 2018). The latter point is crucial for making the correspondence

useful in real-world applications.

This paper is organized as follows. Section 2 surveys the basics of neural networks.

Section 3 discusses the theoretical results relating the behavior of neural networks in

the infinite-width limit to Gaussian Processes. In Section 4, we apply the techniques of
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Effective Field Theory to analyzing neural networks and their associated non-gaussian

processes. Section 5 discusses how Renormalization Group Flow can further shed light

on the behavior of neural networks. Section 6 discusses the experimental verification

of the NN-QFT correspondence. In Section 7, we suggest possible future research

directions. Section 8 summarizes the main aspects of the NN-QFT correspondence.

2. NEURAL NETWORKS

Machine learning is a branch of artificial intelligence and computer science which

focuses on the use of data and algorithms to emulate the way that humans learn.

Machine learning is an important component of the growing field of data science.

Through the use of statistical methods, algorithms are trained to make classifications

or predictions, uncovering new insights in different applications. Neural networks is a

sub-field of machine learning. The reason why neural networks attract great interest

and are successfully applied in many different contexts nowadays lies in the universal-

ity results: it has been shown that neural networks can be used to approximate any

continuous function to an arbitrary accuracy when the depth of the neural network is

large enough (Hornik et al. 1989; Zhou 2018; Kratsios 2021). Although different types

of machine learning exist (e.g. supervised (Kotsiantis 2007), unsupervised (Alloghani

et al. 2020), and reinforcement learning (Arulkumaran et al. 2017)), in this paper we

focus on supervised learning with neural networks.

First, let us briefly review the definition of neural networks. A neural network is

a function fθ : Rdin → Rdout with ”learnable” parameters θ. A general setup in

supervised machine learning is as follows. We start with collecting some data (for

example, thousands of images of handwritten digits from 0 to 9). Note that in modern

applications of machine learning, collecting data tends to be the step that requires

the most time and attention because creating a balanced, unbiased dataset is key

to ensuring that the trained neural network performs well (Buda et al. 2018). After

collecting the data, we assign a ”label” to each sample (in the case of a classification

task) or associate a scalar value/vector to each sample that we would like our neural

network to learn to predict. In the example with images of digits, each sample is

an image and the corresponding label is the digit displayed. This way, we create a

training dataset.

At this point, we must decide on the architecture of the neural network; this deci-

sion depends on the problem in question (Philipp 2021). The two most famous types

of architectures are feed-forward (Baldi & Vershynin 2019) and convolutional (Le-

Cun & Bengio 1998). Feed-forward neural networks are most suitable for problems

that involve 1D vector inputs and 1D vector outputs. Feed-forward neural networks

have simple architectures: they repeatedly compose affine transformations followed

by non-linearities at each layer (we discuss a simple example below). Convolutional

neural networks, on the other hand, have achieved great success in Computer Vi-
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sion applications and are suitable for problems that involve imagery data (LeCun &

Bengio 1998).

After defining the architecture, we then would like our neural network to learn to

extract patterns from the dataset to be able to make predictions on new data (for

example, to identify digits in new images). To achieve this goal, we define a loss func-

tion, which is a function that quantifies the ”distance” (however it is defined) between

the neural network outputs and the labels (Janocha & Czarnecki 2017). In addition

to quantifying the distance between predictions and labels, the loss function may en-

code information that allows to keep the neural network from overparametrization or

other unwanted behavior (e.g., see Li et al. (2022); Du & Lee (2018)).

Next, we choose a training algorithm (e.g., stochastic gradient descent (Ruder 2017))

and train the network: We first randomly initialize the neural network, i.e. we ran-

domly pick values for each of the learnable parameters θ. Then, the neural network

fθ is evaluated on our dataset, producing an output for each input. Depending on

how far the predictions are from the labels (which is quantified by the loss function),

the training algorithm updates θ parameters to minimize the loss function. There is

no strict rule for how long the training process needs to be (i.e. for how many times

the learnable parameters θ need to be updated before the loss function is close to

its minimum, assuming the minimum exists). The question of convergence in train-

ing is still widely researched nowadays (Skorski et al. 2020; Min et al. 2021). After

the training has been completed, we can apply our neural network with the learned

parameters θ to new data.

For a concrete and simple example, let us consider a feed-forward neural network

with one hidden layer. Such neural network is defined by f(x) = W1(σ(W0x+b0))+b1,

where the weights and biases, Wi and bi, characterize the affine transformations for

each layer, and σ is an element-wise non-linearity. This notation is somewhat abstract,

but the basic point is simple: we repeatedly compose affine transformations followed

by non-linearities at each layer. We explain concretely what this means in Equations

2 and 3 below. Including the spaces associated with the hidden layers, we can describe

a 1-layer feed-forward neural network as the following sequence of transformations:

fθ,N : Rdin W0, b0−−−→ RN σ−→ RN W1, b1−−−→ Rdout . (1)

Note that here we introduce N in our notation for the neural network fθ,N ; this

parameter specifies the number of ”units” at the hidden layer in our 1-layer feed-

forward neural network (see Figure 1). While in this paper we are considering the

simplest feed-forward neural network with just one hidden layer, in practice a neural

network consists of many layers, i.e. we repeatedly compose affine transformations

followed by non-linearities at each layer.

For initializing the 1-layer feed-forward neural network, the weight and bias param-

eters, collectively labeled as θ, are i.i.d. and drawn from a Gaussian distribution. In

this work, the biases are drawn from N (µb, σ
2
b ) and the weights in each layer W0,
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Figure 1. Single-layer fully-connected network of width N , with din = dout = 2. Arrows
represent the linear layers of weights and biases, and the nonlinear activation function is
applied element-wise to each node (”unit”) in the hidden layer.

W1 are drawn from N (µW , σ
2
W/din) and N (µW , σ

2
W/N), respectively, i.e. the weights

are normalized with respect to the input dimension of the associated layer. The first

linear layer takes the input x to a pre-activation z0

zj0 =
∑
i=1

W ij
0 x

i + bj0, (2)

which is then acted on by the elementwise nonlinearity σ, giving a post-activation

xj1 = σ(zj0), that is acted on by the final linear layer, yielding

fθ,N(x) = zk1 =
N∑
j=1

W jk
1 xj1 + bk1, (3)

the output of the neural network. Note that the type of non-linearity that we apply at

each layer can be chosen; examples of commonly used non-linearities include ReLU,

tanh, and sigmoid (Nwankpa et al. 2018).

3. INFINITE-WIDTH NEURAL NETWORKS AND GAUSSIAN PROCESSES

By the Central Limit Theorem (CLT), in the infinite width limit the network outputs

are drawn from a Gaussian distribution on function space (Neal 1995), i.e. the network

outputs are drawn from a Gaussian Process (GP). This follows from the observation

that the weight part of the output layer of the network defined in Equation 3 is the
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sum of N i.i.d. random variables (we remind the reader that this paper focuses on

understanding the behavior of neural networks at the initialization stage as opposed

to during/after training). In the infinite width limit N → ∞, we obtain a finite

sum over these terms. Thus by the CLT we have that the neural network output is

drawn from a Gaussian distribution, i.e. the neural network evaluated on any finite

collection of samples is drawn from a multivariate Gaussian distribution.

Note that since neural networks output real scalars/vectors, it is natural to trans-

late them to scalar fields, which correspond to spin-0 particles, in the NN-QFT cor-

respondence. Let us now review the concept of correlation functions which will help

us understand and verify the QFT-NN correspondence.

Consider a neural network with learnable parameters θ,

fθ : Rdin → Rdout , (4)

where at initialization θ ∼ P (θ). The parameter distribution P (θ) and the network

architecture induce a distribution on function space from which the neural network

is drawn, P (f). Later in the text, we may drop the subscript θ and write f instead

of fθ.

For many types of neural networks there is a limit N →∞ in which the distribution

on functions becomes a Gaussian process (Yang 2019b), i.e. the neural network

outputs {f(x1), . . . , f(xk)}, evaluated on a fixed set of k inputs {x1, . . . , xk}, are

drawn from a multivariate Gaussian distribution (µ,Ξ−1),

{f(x1), . . . , f(xk)} ∼ (µ,Ξ−1), (5)

By assumption of Halverson et al. (2021), µ = 0. The covariance matrix Ξ is deter-

mined by the kernel function K(x, x′) as (Ξ−1)ij = Kij := K(xi, xj). Since µ = 0, the

GP is determined by its covariance.

Correlation functions between n outputs (a.k.a. n-pt functions) are defined as

G(n)(x1, . . . , xn) =

∫
df f1 . . . fn e

− 1
2
fiΞijfj

Z
, (6)

where the partition function is Z =
∫
df e−S, and S = −1

2
fiΞijfj is the log-

likelihood (action in physics). Einstein summation convention is assumed, and

fi := f(xi) is a vector of outputs on a fixed set of inputs {xi} with dimension din = d.

In the continuous limit, the correlation functions become

G(n)(x1, . . . , xn) =

∫
df f(x1) . . . f(xn) e−S

Z
, (7)

where the log-likelihood is

S =
1

2

∫
ddinx ddinx′ f(x)Ξ(x, x′)f(x′) (8)
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and Ξ(x, x′) = K−1(x, x′) is the inverse covariance function, defined by∫
ddinx′K(x, x′) Ξ(x′, x′′) = δ(din)(x− x′′), (9)

where δ(din)(x− x′′) is the din-dimensional Dirac delta function. This equation is the

continuum analog of the relation (Ξ−1)ij = Kij in the discrete case.

Both the discrete and continuum versions of the GP n-pt functions may be computed

exactly using standard Gaussian integral techniques.

A direct physics analog of a Gaussian process is a free field theory φ(x), whose path

integral is

Z =

∫
Dφe−S[φ] (10)

where S[φ] is the free scalar theory action, which is quadratic in φ. For example, S[φ]

can be

S[φ] =

∫
ddxφ(x)(2 +m2)φ(x), (11)

with 2 := ∂µ∂
µ and m being the mass of the bosonic particle associated to φ. The

functional inverse of (2 + m2) is the propagator, the 2-pt correlation function in the

free field theory, and is the analog of the GP kernel.

3.1. Neural Network Correlation Functions with Feynman Diagrams

As we develop the NN-QFT correspondence throughout the paper, it is useful to

discuss a diagrammatic approach to computation of correlation functions in neural

networks. We derive Feynman rules in this section.

Consider the following partition function of a Gaussian process with source J(x)

ZGP [J ] =

∫
dfe−SGP− 1

2

∫
ddinxJ(x)f(x)− 1

2

∫
ddinyJ(y)f(y)

ZGP,0
, (12)

where ZGP,0 :=
∫
dfe−SGP , and SGP is the action, or (negative) log-likelihood,

SGP =
1

2

∫
ddinxddinyf(x)Ξ(x, y)f(y). (13)

The n-pt correlation function is defined by

G
(n)
GP (x1, . . . , xn) =

∫
df f(x1) . . . f(xn) e−SGP

ZGP,0
, (14)

By performing the Gaussian integral, we obtain

ZGP [J ] = exp

(
1

2

∫
ddinx ddiny J(x)K(x, y)J(y)

)
. (15)
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GP / asymptotic NN Free QFT

input x external space or momentum space point

kernel K(x1, x2) Feynman propagator

asymptotic NN f(x) free field

log-likelihood free action SGP

Table 1. Correspondence between GP / asymptotic neural network and free QFT

To compute the n-point correlation function, we use Wick’s theorem (Ferialdi &

Diósi 2021):

G
(n)
GP (x1, . . . , xn) =

∑
p∈Wick(x1,...,xn)

K(a1, b1) . . . K(an/2, bn/2) (16)

where we write each element p ∈ (x1, . . . , xn) as p = (a1, b1), . . . , (an/2, bn/2) and we

sum over all possible Wick contractions:

Wick(x1, . . . , xn) = {P ∈ Partitions(x1, . . . , xn) | |p| = 2 ∀p ∈ P}. (17)

In other words, to compute G
(n)
GP (x1, . . . , xn), we sum over all ways of pairing up

elements in {x1, . . . , xn}, and in each term write a kernel factor K(ai, bi) for each

of the pairs (ai, bi). Translating this into Feynman rules, we sum over all ways of

connecting the points {x1, . . . , xn} in pairs, and in each term draw a line between

the points in the pair (ai, bi). To go from Feynman diagrams to analytic expressions,

write a factor of K(ai, bi) for each line in the diagram connecting ai and bi.

For instance, in the case when n = 4, we have

G
(4)
GP (x1, x2, x3, x4) = K(x1, x2)K(x3, x4) +K(x1, x3)K(x2, x4) +K(x1, x4)K(x2, x3)

=

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x3

x4

Note that G
(n)
GP (x1, . . . , xn) = 0 for any odd n.

The above discussion shows that asymptotic neural networks are analogous to free

field theories. The precise correspondence is summarized in Table 1. Remembering

that the GP can often be realized by asymptotic neural networks, in this analogy

the neural network inputs are translated to points in space, and the kernel is the

Feynman propagator, which represents the amplitude of propagation of a particle

from one point to another. While in this analogy asymptotic neural networks do not

give rise to interactions in QFT, we will show in Section 4 that the interactions do

arise when ZGP is corrected by non-Gaussian terms.

We note that in this correspondence, function space perspective is taken as op-

posed to the usual parameter space perspective, i.e. here, initializing neural networks

is viewed as drawing functions (neural networks) from a particular function space

distribution.
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4. NON-GAUSSIAN PROCESSES: FINITE WIDTH NEURAL NETWORKS

In this Section, we explain how to use Effective Field Theory (EFT) to analyze

neural network architectures and their associated NGPs. The key idea is as follows:

the action SGP , associated to the asymptomatic behavior of a neural net as N →∞,

does not suffice to compute correlation functions G(n) of finite-width neural networks.

EFT allows to determine ∆S correction to the GP log-likelihood, giving an effective

log-likelihood for the NGP associated to the finite-width neural networks,

S = SGP + ∆S (18)

In the QFT-NN correspondence, Effective Field Theory techniques are applied to

achieve the following goals:

• Give a candidate ∆S for the NGP.

• Fix coefficients of operators in ∆S by conducting experiments.

• Once the coefficients are fixed, make predictions for other experiments and

verify them.

The QFT-NN correspondence in the case of finite-width neural networks is sum-

marized in Table 2. We identify the NN input x ∈ Rdin with a point in space or

momentum space in field theory, the NN kernel with free or exact propagator in

QFT (whether the propagator is free or exact depends on what we obtain in the

infinite width limit). The NN output f(x) and log-likelihood now correspond to the

interacting field and the EFT action, respectively.

In EFT, one organizes the study of a physical system according to length or momen-

tum scale; with neural networks, we organize our analysis according to input scale.

Let us perform some dimensional analysis. SGP must be dimensionless; it scales as

x0, and we write [SGP ] = 0. Since ddinx scales as xdin it has input dimensions of din,

[ddinx] = din, and [ddiny] = din. The condition [S] = 0 then gives a relation between

dimensions of f and Ξ, [S] = 2din + 2[f ] + [Ξ] = 0, which determines the classical

scaling dimension of the neural network f ,

[f ] = −2din + [Ξ]

2
. (19)

This can then be used to determine the dimensions of the coefficients of operators

that might appear in ∆S. For instance, consider operators

Ok := gk f(x)k (20)

appearing in ∆S as
∫
dx k. Then [∆S] = 0 requires din + k[f ] + [gk] = 0 and we have

[gk] = −din +
k(2din + [Ξ])

2
. (21)
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NGP / finite NN Interacting QFT

input x external space or momentum space point

kernel K(x1, x2) free or exact propagator

network output f(x) interacting field

non-Gaussianities interactions

non-Gaussian coefficients coupling strengths

log probability effective action S

Table 2. Correspondence between quantities in the NGP / finite-width neural network
and QFT. See text for discussion on whether the kernel is the free or exact propagator.

Using Equation (9) and the fact that [δ(din)(x)] = −din we have din +[Ξ]+[K] = −din,

and therefore

[gk] = −din −
k [K]

2
. (22)

Most importantly, Wilsonian EFT provides the following rules for constructing the

effective action of an NGP associated to a neural network admitting a known GP

limit:

• Determine the symmetries (or desired symmetries) respected by the system of

interest.

• Fix an upper bound k on the dimension of any operator appearing in ∆S.

• Define ∆S to contain all operators of dimension ≤ k that respect the symme-

tries.

Since the GP limit is known, the NGP is defined by S = SGP + ∆S. This allows

to determine correlation functions. By experimentally measuring them, one may fix

coefficients of terms in ∆S and make subsequent predictions. The desired symmetries

and the choice of a relevant value of k may be constrained by the problem in question.

4.1. Correlation Functions in NGPs with Interacting Feynman Diagrams

We now introduce a method for computing NGP correlation functions. Let us first

briefly discuss the basics of cutoffs and perturbation theory.

We start with perturbation theory. Consider an NGP corresponding to a finite-

width neural network architecture, with associated effective action S = SGP + ∆S.

The GP n-pt correlation function is

G(n)(x1, . . . , xn) =

∫
df f(x1) . . . f(xn) e−S

Z0

, where Z0 =

∫
dfe−S. (23)

We can use perturbation theory to approximate n-pt functions if the coefficients of

operators in ∆S are sufficiently small. In QFT, this gives rise to interactions. For

instance, consider corrections to the n-pt function coming from ∆S =
∫
ddinx gk f(x)k,
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with k > 2. Multiplying the numerator and denominator by 1/ZGP,0 and expanding

under the assumption of small gk, we obtain

G(n)(x1, . . . , xn) =

∫
df f(x1) . . . f(xn)

[
1−

∫
ddinx gkf(x)k +O(g2

k)
]
e−SGP /ZGP,0∫

df
[
1−

∫
ddinx gkf(x)k +O(g2

k)
]
e−SGP /ZGP,0

.

(24)

Truncating at a given order in gk (in this case just the leading correction), we can

approximate the n-pt using Wick’s theorem and Feynamn diagrams.

We now introduce cutoffs. Computing NGP correlation functions via perturbation

theory can lead to integrals that are divergent. We can treat the divergence by

introducing a cutoff Λ > 0:

S → SΛ, (25)

where SΛ differs from S only in the fact that all integrals are bounded from below

by −Λ and above by Λ. In QFT, introduction of a cutoff is justified by the fact

that physical theories have finite ranges of applicability. For example, a model that

describes a scattering process done at a given momentum scale can not be valid up to

arbitrarily high momenta. In this case, low energy experiments with momenta |p| � Λ

should not depend Λ. This requirement gives rise to the Wilsonian renormalization

group equations (RGEs), which are differential equations that impose relations on

the coefficients of operators in S. We will discuss this further in Section 5.

For experimental verification of the QFT-NN correspondence, Halverson et al.

(2021) focuses on 1-layer feed-forward neural networks introduced in Section 2. More-

over, we set dout = 1. We may thus consider non-Gaussian terms of the form

∆S =

∫
dx
[
g f(x)3 + λ f(x)4 + α f(x)5 + κ f(x)6 + . . .

]
. (26)

However, all odd-point functions vanish, since the mean value of the weights and

biases is assumed to be zero. Thus, g = α = 0. This result can also be understood

with a symmetry argument: randomly initialized neural networks f and −f should be

on equal footing, which implies S must be invariant under f → −f transformation.

Hence, the effective action that we are considering is

S = SGP +

∫
ddinx

[
λ f(x)4 + κ f(x)6

]
. (27)

With this effective action for the NGP, we can compute correlation functions in

perturbation theory. One may also represent the correlation functions diagrammati-

cally by the Feynman rules summarized below:
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Note that the above discussion and Feynman rules apply only in the case of S =

SGP + ∆S, where ∆S is comprised of only non-Gaussian corrections, i.e. SGP is the

only Gaussian part of the action. In that case the two-point function is

G(2)(x1, x2) = K(x1, x2) + λ- and κ- corrections. (28)

In particular, K(x1, x2) is the analog of the free-theory propagator in QFT. In some

neural net architectures, however, it may happen that the GP kernel is the exact 2-pt

function for the NGP as well

G(2)(x1, x2) = K(x1, x2), (29)

in which case the Feynman rules get slightly modified, as discussed in Halverson et al.

(2021).

5. WILSONIAN RENORMALIZATION IN NEURAL NET NON-GAUSSIAN

PROCESSES

Let us consider a concrete example when we can introduce a cutoff scale. Suppose

we have a dataset of grayscale handwritten digits. Let the input space be R28×28,

with the real numbers representing brightness: each of 28 × 28 pixels ranging from

∞ (pure black), 0 (pure grey) to ∞ (pure white). Images in the dataset that are

grey correspond to the inputs that are close to zero. Computing NGP correlation

functions using perturbation theory, i.e. integrating from pure black to pure white

colors, may introduce divergences. We may thus limit the integration to range from

some threshold black to white colors, leading to the replacement ∆S → ∆SΛ. These

thresholds correspond to a maximum brightness and maximum darkness scale, which

should be unimportant because a small change in very high threshold amount of black
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and white colors should not affect correlation functions associated with grey images,

i.e. inputs near zero. Thus, brightness thresholds in this example are analogous to

the cutoffs in EFT.

The above discussion supports a central observation in renormalization theory: all

SΛ with sufficiently high cutoffs should give the same theoretical predictions for ex-

periments:
dG(n)(x1, . . . , xn)

dΛ
= 0. (30)

The differential equations are known as renormalization group equations (RGEs),

which include the β-function associated to the coupling, defined as

β(g
l
) :=

d g
l

d logΛ
, (31)

This gives rise to what is known as the Renormalization Group (RG) flow. Theo-

retical considerations based on RG flow considerations may then be used to argue

which couplings are essential in an NGP associated to a given neural network archi-

tecture. Non-perturbative renormalization for the QFT-NN correspondence is further

discussed in Erbin et al. (2021).

6. EXPERIMENTAL VERIFICATION

One must derive the 2-point function (”kernel”) associated to a given infinite width

architecture in order to compute correlation functions in the associated GP. Deriva-

tions of three types of kernels are done in Appendix B of Halverson et al. (2021).

Assuming the couplings are constants, they can then be measured from experiments.

To keep this paper manageable, we leave the calculations out of this manuscript.

Here, it suffices to say that the NN-QFT correspondence has been verified in the case

of a 1-layer feed-forward neural network with three different types of kernels.

7. FUTURE DIRECTIONS

There are a number of research directions that can be pursued within the established

NN-QFT correspondence introduced in this paper.

• First, given that the GP property of neural nets in the infinite width limit per-

sists under appropriate training Yang (2019b, 2020); Yang & Hu (2020); Lee

et al. (2019); Jacot et al. (2018), the next step is to further study the train-

ing process and experimentally verify the NN-QFT correspondence in trained

networks.

Yang (2019b) has recently shown that Convolutional, Feed-forward and Recur-

rent Neural Networks all admit a GP limit. It will be interesting to associate

an NGP to a Convolutional Neural Network and experimentally measure the

couplings. This would serve as another test of the proposed NN-QFT corre-

spondence.
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• The fundamental notion of symmetries that is widely utilized throughout

physics can also serve as a guiding principle in designing neural network ar-

chitectures. Generally, symmetries in neural networks are realized as linear

maps g ∈ G that act on the activations φ as ρ(g)φ, where is a representation

matrix. Besides translations, other examples of G in ML are rotations (Cohen

et al. 2018) and permutations (Maron et al. 2019). Developing a theory of

symmetries in neural networks can further shed light on their performance. ’t

Hooft’s notion of technical naturality (that the couplings may be small when

setting them to zero recovers a symmetry) may serve as a guiding principle to

determining whether the coefficient of a non-Gaussian term in the NGP likeli-

hood associated to a given neural network is a constant.

• In addition, quantum computing is believed to influence the field of machine

learning in the future. Accordingly, quantum theory-based formalism of deep

learning has recently been proposed in Bondesan & Welling (2021), which in-

cluded a discussion of implementing ML models on a quantum computer.

• How does information propagate through neural networks? The question of

neural net architectures is of importance. Why does it need to be linear? There

are other widely used architectures that utilize skip connections, filters, etc.

However, there is no general theory of NN architectures. It is possible that

homotopy group theory can serve as a foundation for the analysis of NN archi-

tectures.

• Lastly, arrangement and representation of input data is important and is often

overlooked in practice. Understanding the structure of the input space is critical

for designing machine learning algorithms and their training schemes. In the

NN-QFT correspondence, I would guess that studying the data space would

translate to QFT in curved spacetime or more general manifolds.

8. CONCLUSIONS

In this paper, we discussed the applications of various techniques from QFT to the

study of neural networks. We introduced perturbation theory, Feynman diagrams,

Effective Field Theory and Renormalization Group flow and have shown their use-

fulness for understanding the behavior of neural networks that become a Gaussian

Process in an asymptotic limit.

ACKNOWLEDGMENTS

We thank Wenli Zhao for helpful discussions throughout the semester.

REFERENCES

Alloghani, M., Al-Jumeily, D., Mustafina,
J., Hussain, A., & Aljaaf, A. J. 2020, A
Systematic Review on Supervised and
Unsupervised Machine Learning
Algorithms for Data Science, ed. M. W.
Berry, A. Mohamed, & B. W. Yap
(Cham: Springer International
Publishing), 3–21,
doi: 10.1007/978-3-030-22475-2 1

Arulkumaran, K., Deisenroth, M. P.,
Brundage, M., & Bharath, A. A. 2017,
IEEE Signal Processing Magazine, 34,
26–38, doi: 10.1109/msp.2017.2743240

http://doi.org/10.1007/978-3-030-22475-2_1
http://doi.org/10.1109/msp.2017.2743240


14 Ivshina

Baldi, P., & Vershynin, R. 2019, The

capacity of feedforward neural

networks.

https://arxiv.org/abs/1901.00434

Bondesan, R., & Welling, M. 2021, The

Hintons in your Neural Network: a

Quantum Field Theory View of Deep

Learning.

https://arxiv.org/abs/2103.04913

Buda, M., Maki, A., & Mazurowski, M. A.

2018, Neural Networks, 106, 249–259,

doi: 10.1016/j.neunet.2018.07.011

Cohen, T. S., Geiger, M., Koehler, J., &

Welling, M. 2018, Spherical CNNs.

https://arxiv.org/abs/1801.10130

Du, S. S., & Lee, J. D. 2018, On the

Power of Over-parametrization in

Neural Networks with Quadratic

Activation.

https://arxiv.org/abs/1803.01206

Erbin, H., Lahoche, V., & Ousmane

Samary, D. 2021, arXiv e-prints,

arXiv:2108.01403.

https://arxiv.org/abs/2108.01403
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